报告时间:2025年11月7日 上午9:30开始
报 告 人:夏卿(温州肯恩大学)
报告地点:9-218
报告题目:Unfitted boundary algebraic equation: a finite difference analogue of boundary integral equation
报告摘要: In this talk, we present a singularity-free unfitted boundary algebraic equation method, a finite-difference analogue of the classical boundary integral equation approach. We construct lattice Green’s functions for the Poisson, modified Helmholtz, and Helmholtz equations, and discuss efficient strategies for their computation. Building on discrete potential theory, we formulate discrete analogues of single- and double-layer potentials, enabling accurate treatment of complex geometries without conforming meshes. Various boundary closure techniques are examined for Dirichlet, Neumann, and mixed boundary conditions, with emphasis on robustness in challenging geometric configurations. To further enhance computational efficiency, we introduce acceleration strategies inspired by the difference potentials framework. Numerical experiments demonstrate the accuracy, stability, and scalability of the proposed method across a range of test problems.
报告人简介:夏卿,2019年博士毕业于犹他大学,先后于伦斯勒理工学院、瑞典皇家理工学院任博士后研究员、Dahlquist研究员。现任温州肯恩大学数学助理教授、国际前沿交叉研究院副研究员。研究内容集中于非贴体网格方法、离散势能理论及其在电磁学、流体、材料、生物模型中的应用。