报告时间:2025年6月26日 14:30开始
报 告 人:关波(俄亥俄州立大学 教授)
报告地点:9-113
报告题目:On a theorem of Cheng and Yau
报告摘要: We try to understand a theorem of Cheng and Yau who proved the existence of complete Kahler-Einstein metrics of negative curvature on a strong pseudoconvex domain. We take a more elementary approach from the PDE point of view using a proximation by Dirichlet problem for the complex Monge-Ampere equation studied in the work of Cheng-Yau. This is part of a project under progress.
报告人简介:关波,美国俄亥俄州立大学数学系教授。研究方向为非线性偏微分方程和几何分析,主要研究工作包括一般区域/流形上实和复蒙日-安培方程;常高斯曲率曲面的普拉图问题;以及实或复流形上一般完全非线性偏微分方程。相关成果发表在Adv. Math., Amer. J. Math., Annals of Math., CPAM, Duke Math. J., JDG, J. Eur. Math. Soc., J. Reine Angew. Math.等著名数学期刊上。